Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.

نویسندگان

  • Fa-Hsuan Lin
  • Thomas Witzel
  • Seppo P Ahlfors
  • Steven M Stufflebeam
  • John W Belliveau
  • Matti S Hämäläinen
چکیده

Cerebral currents responsible for the extra-cranially recorded magnetoencephalography (MEG) data can be estimated by applying a suitable source model. A popular choice is the distributed minimum-norm estimate (MNE) which minimizes the l2-norm of the estimated current. Under the l2-norm constraint, the current estimate is related to the measurements by a linear inverse operator. However, the MNE has a bias towards superficial sources, which can be reduced by applying depth weighting. We studied the effect of depth weighting in MNE using a shift metric. We assessed the localization performance of the depth-weighted MNE as well as depth-weighted noise-normalized MNE solutions under different cortical orientation constraints, source space densities, and signal-to-noise ratios (SNRs) in multiple subjects. We found that MNE with depth weighting parameter between 0.6 and 0.8 showed improved localization accuracy, reducing the mean displacement error from 12 mm to 7 mm. The noise-normalized MNE was insensitive to depth weighting. A similar investigation of EEG data indicated that depth weighting parameter between 2.0 and 5.0 resulted in an improved localization accuracy. The application of depth weighting to auditory and somatosensory experimental data illustrated the beneficial effect of depth weighting on the accuracy of spatiotemporal mapping of neuronal sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences

Modern neuroimaging techniques enable non-invasive observation of ongoing neural processing, with magnetoencephalography (MEG) in particular providing direct measurement of neural activity with millisecond time resolution. However, accurately mapping measured MEG sensor readings onto the underlying source neural structures remains an active area of research. This so-called "inverse problem" is ...

متن کامل

Sparse current source estimation for MEG using loose orientation constraints.

Spatially focal source estimates for magnetoencephalography (MEG) and electroencephalography (EEG) data can be obtained by imposing a minimum ℓ(1) -norm constraint on the distribution of the source currents. Anatomical information about the expected locations and orientations of the sources can be included in the source models. In particular, the sources can be assumed to be oriented perpendicu...

متن کامل

Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system shoul...

متن کامل

Multimodal functional imaging using fMRI-Informed regional EEG/MEG estimation Citation

We propose a novel method, fMRI-Informed Regional Estimation (FIRE), which utilizes information from fMRI in E/MEG source reconstruction. FIRE takes advantage of the spatial alignment between the neural and the vascular activities, while allowing for substantial differences in their dynamics. Furthermore, with the regional approach, FIRE can be efficiently applied to a dense grid of sources. In...

متن کامل

Bayesian analysis of the neuromagnetic inverse problem with l(p)-norm priors.

Magnetoencephalography (MEG) allows millisecond-scale non-invasive measurement of magnetic fields generated by neural currents in the brain. However, localization of the underlying current sources is ambiguous due to the so-called inverse problem. The most widely used source localization methods (i.e., minimum-norm and minimum-current estimates (MNE and MCE) and equivalent current dipole (ECD) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2006